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Math 564: Adv. Analysis 1 HoMmEewoORK 3 Due: Oct 15 (Sun), 11:59pm

1. Let Ay, A,,..., A, be o-algebras on sets X, X,,..., X, and denote by 4; ® A, Q---® Ay
the o-algebra on X; x X, x--- x X; generated by the sets of the form A; x A, x--- x A .

()

Prove that for all second countable topological spaces Xy, X,,..., Xy,
d
BT, Xi) = @i BX).
(Here ]_[fl:1 X; is the product topology.) In particular, B(RY) = ®f:1 B(R).

Let (X,.A) and (Y;,B;), i = 1,2, be measurable spaces, i.e., sets equipped with
o-algebras. Prove that for (A, B;)-measurable functions f; : X — Y;, the function
(f1, f2): X = Y1 x Y, defined by x  (f;(x), fo(x)) is (A, B; ® B,)-measurable.

Now let (X, ) be a measure space! and conclude that if f,f, : X — R are y-
measurable and g : R?> — R is Borel, then g(f;, /) : X — R is y-measurable. In
particular, f; + f, and f; - f, are y-measurable.

2. For an equivalence relation E on a set X, a selector is a function s: X — X that picks a
point from each E-class, more precisely, s(x)Ex and xEy < s(x) = s(y) for all x,y € X.
By a selector/transversal for a group action, we mean that for its orbit equivalence
relation.

Let I be a countable group and (X, ) be a second countable metric space equipped
with a Borel measure p. Let a : I ~ X be a Borel action of I', i.e. each group element
y €I acts as a Borel function from X to X. Prove:

(a)

(b)

a admits a Borel transversal if and only if it admits a Borel selector.

Hint: For <, note that a selector is an idempotent, so s(X) = {x € X : s(x) = x} and
note that the diagonal {(x,x) : x € X} is in B(X)® B(X) by Question 1(a).

If p is atomless (as in Sierpinski’s theorem) and non-zero (i.e. u(X) > 0), and the
action a is y-null-preserving® and y-ergodic, then a does not admit a y-measurable
transversal or a y-measurable selector.

Remark: This is a generalization of what we proved for Eg and [E.

If a is p-ergodic, then for every second countable Hausdorff topological space Y,

every a-invariant® p-measurable function f : X — Y is constant a.e., i.e., there a
conull set X’ C X such that f|y- is constant.

Hint: Define an appropriate notion of “heaviness” for open subsets of Y in some
countable open basis and intersect all heavy basic open sets: you will get down to
a point (like in the proof of Kénig’s lemma).

Iwe suppress the o-algebra from the notation if it is not important.
’This means that for each p-measurable set A C X and y €T, the set yA is y-null if and only if A is y-null.
3This means that the function is constant on each a-orbit.
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3. Prove that universally measurable functions are closed under compositions. More
precisely, if X, Y, Z are topological spaces, and f : X — Y and g: Y — Z are universally
measurable functions, then go f : X — Z is universally measurable.

4. Prove the main case of the Measure Isomorphism Theorem, namely: every atomless
Borel probability measure p on [0, 1] is isomorphic to the Lebesgue measure A on [0,1].

Hint: The function f, associated to p is an isomorphism from ([0, 1], u) to ([0, 1], A).

5. Prove that the atoms of o-finite Borel measures on second countable Hausdorff topo-
logical spaces (e.g., separable metric spaces) are points, more precisely, each atom is of
the form {x} U Z, where x is a point and Z is a null set.

Hint: Fix an atom and define an appropriate notion of smallness for basic open sets (in
some fixed countable basis), so that removing the small ones we are left with a point.

Remark: This statement has nothing to do with topology, the general statement (proven
similarly) is: In a o-finite measure space (X, B, u), where B is countably generated and
separates points4, the atoms are points.

6. (Cantor sets’) In a topological space X, a Cantor set is a set C C X homeomorphic to
the Cantor space 2. (In particular, C is a compact subset of X of size continuum.)

(a) Ina connected® metric space X (such as IR?), prove every Cantor set has is closed
and has empty interior; in particular, it is nowhere dense.

(b) The standard Cantor set in [0, 1] is the set C := (),,epy Usen Cs, where each C; is a
closed interval defined inductively by setting Cy := [0, 1] and letting C, and Cy;
be the bottom third and top third closed subintervals of the closed interval C;
(in particular, lh(Cy;) = %lh(Cs)), for each s € 2<N. In particular, C, = [0, %] and
Cl = [%,1], COO = [0,31—2], CO] = [3—22,%], ClO = [%,3—72], and Cll = [?%,1], etc. Prove
that C is indeed a Cantor set and that C is Lebesgue null.

(c) Define a Cantor subset of [0, 1] of positive Lebesgue measure.

Hint: Note that in the standard Cantor set, Cyy LI C; occupies 2/3 of C, regardless
of n:=lh(s). Change the construction so that for each , the (1 + 1) level occupies
the p,, proportion of the n'" level and the sequence (p,,) goes to 1 fast enough.

7. Follow the steps below to build an example of a Borel (in fact, continuous) function
f :[0,1] - [0,1] and a Lebesgue measurable function g:[0,1] — [0,1] such that the
composition g o f is not Lebesgue measurable.

(i) Prove that every Lebesgue measurable set A of positive measure contains a non-
measurable subset.

Hint: Any transversal of EQ|A, the proof is the same as for A:=[0,1] done in class.

4we say that a collection C of subsets of X separates points if for each pair x, y of distinct points, there is
a set C e C containing exactly one of the points x, .
>Most of this quesiont was meant for Homework 1, but I forgot.
®A topological space is connected if it has no clopen sets, other than the whole space and 0.
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(ii) Let Cy and C, be Cantor sets in [0,1] where C, is Lebesgue null, while C, has
positive Lebesgue measure. Let h: C, — Cy be a homeomorphism and extend it to
a Borel function f : [0,1] — [0,1] so that f(C,) = Cy and f(C¢) are disjoint.
Remark: If Cy and C, are constructed by removing middle open intervals at every
step, like in Question 6(b), then f can be taken to be continuous, think how.

(iii) Let Y C C, be a Lebesgue non-measurable set and put g := 1 7(y). Observe that g is
Lebesgue measurable, however g o f is not.

8. Let (X, p) be a measure space. Prove that the integral of simple functions is well-defined,

i.e. for all y-measurable sets A;, B; C X and 4;,0; € R,

Zai]lAi = ij]lBj implies Z“il/‘(Ai) = Zb]-/,t(Bj).

i<n j<m i<n j<m



