Math 564: Adv. Analysis 1 HOMEWORK 3 Due: Oct 15 (Sun), 11:59pm

- **1.** Let A_1, A_2, \ldots, A_d be σ -algebras on sets X_1, X_2, \ldots, X_d , and denote by $A_1 \otimes A_2 \otimes \cdots \otimes A_d$ the σ -algebra on $X_1 \times X_2 \times \cdots \times X_d$ generated by the sets of the form $A_1 \times A_2 \times \cdots \times A_d$.
 - (a) Prove that for all second countable topological spaces X_1, X_2, \ldots, X_d ,

$$\mathcal{B}(\prod_{i=1}^{d} X_i) = \bigotimes_{i=1}^{d} \mathcal{B}(X_i).$$

(Here $\prod_{i=1}^{d} X_i$ is the product topology.) In particular, $\mathcal{B}(\mathbb{R}^d) = \bigotimes_{i=1}^{d} \mathcal{B}(\mathbb{R})$.

- (b) Let (X, \mathcal{A}) and (Y_i, \mathcal{B}_i) , i = 1, 2, be measurable spaces, i.e., sets equipped with σ -algebras. Prove that for $(\mathcal{A}, \mathcal{B}_i)$ -measurable functions $f_i : X \to Y_i$, the function $(f_1, f_2) : X \to Y_1 \times Y_2$ defined by $x \mapsto (f_1(x), f_2(x))$ is $(\mathcal{A}, \mathcal{B}_1 \otimes \mathcal{B}_2)$ -measurable.
- (c) Now let (X,μ) be a measure space¹ and conclude that if $f_1, f_2 : X \to \mathbb{R}$ are μ -measurable and $g : \mathbb{R}^2 \to \mathbb{R}$ is Borel, then $g(f_1, f_2) : X \to \mathbb{R}$ is μ -measurable. In particular, $f_1 + f_2$ and $f_1 \cdot f_2$ are μ -measurable.
- **2.** For an equivalence relation *E* on a set *X*, a **selector** is a function $s : X \to X$ that picks a point from each *E*-class, more precisely, s(x)Ex and $xEy \Leftrightarrow s(x) = s(y)$ for all $x, y \in X$. By a selector/transversal for a group action, we mean that for its orbit equivalence relation.

Let Γ be a countable group and (X, μ) be a second countable metric space equipped with a Borel measure μ . Let $\alpha : \Gamma \curvearrowright X$ be a Borel action of Γ , i.e. each group element $\gamma \in \Gamma$ acts as a Borel function from X to X. Prove:

(a) α admits a Borel transversal if and only if it admits a Borel selector.

HINT: For \Leftarrow , note that a selector is an idempotent, so $s(X) = \{x \in X : s(x) = x\}$ and note that the diagonal $\{(x, x) : x \in X\}$ is in $\mathcal{B}(X) \otimes \mathcal{B}(X)$ by Question 1(a).

(b) If μ is atomless (as in Sierpinski's theorem) and non-zero (i.e. $\mu(X) > 0$), and the action α is μ -null-preserving² and μ -ergodic, then α does not admit a μ -measurable transversal or a μ -measurable selector.

Remark: This is a generalization of what we proved for $\mathbb{E}_{\mathbb{Q}}$ and \mathbb{E}_{0} .

(c) If α is μ -ergodic, then for every second countable Hausdorff topological space *Y*, every α -invariant³ μ -measurable function $f : X \to Y$ is constant a.e., i.e., there a conull set $X' \subseteq X$ such that $f|_{X'}$ is constant.

HINT: Define an appropriate notion of "heaviness" for open subsets of *Y* in some countable open basis and intersect all heavy basic open sets: you will get down to a point (like in the proof of Kőnig's lemma).

¹We suppress the σ -algebra from the notation if it is not important.

²This means that for each μ -measurable set $A \subseteq X$ and $\gamma \in \Gamma$, the set γA is μ -null if and only if A is μ -null.

³This means that the function is constant on each α -orbit.

- **3.** Prove that universally measurable functions are closed under compositions. More precisely, if *X*, *Y*, *Z* are topological spaces, and $f : X \to Y$ and $g : Y \to Z$ are universally measurable functions, then $g \circ f : X \to Z$ is universally measurable.
- 4. Prove the main case of the Measure Isomorphism Theorem, namely: every atomless Borel probability measure μ on [0,1] is isomorphic to the Lebesgue measure λ on [0,1]. HINT: The function f_μ associated to μ is an isomorphism from ([0,1], μ) to ([0,1], λ).
- 5. Prove that the atoms of σ -finite Borel measures on second countable Hausdorff topological spaces (e.g., separable metric spaces) are points, more precisely, each atom is of the form $\{x\} \cup Z$, where x is a point and Z is a null set.

HINT: Fix an atom and define an appropriate notion of smallness for basic open sets (in some fixed countable basis), so that removing the small ones we are left with a point.

REMARK: This statement has nothing to do with topology, the general statement (proven similarly) is: In a σ -finite measure space (X, \mathcal{B}, μ), where \mathcal{B} is countably generated and separates points⁴, the atoms are points.

- **6.** (Cantor sets⁵) In a topological space *X*, a **Cantor set** is a set $C \subseteq X$ homeomorphic to the Cantor space $2^{\mathbb{N}}$. (In particular, *C* is a compact subset of *X* of size continuum.)
 - (a) In a connected⁶ metric space X (such as \mathbb{R}^d), prove every Cantor set has is closed and has empty interior; in particular, it is nowhere dense.
 - (b) The standard Cantor set in [0,1] is the set $C := \bigcap_{n \in \mathbb{N}} \bigcup_{s \in 2^n} C_s$, where each C_s is a closed interval defined inductively by setting $C_{\emptyset} := [0,1]$ and letting C_{s0} and C_{s1} be the bottom third and top third closed subintervals of the closed interval C_s (in particular, $\ln(C_{si}) = \frac{1}{3} \ln(C_s)$), for each $s \in 2^{<\mathbb{N}}$. In particular, $C_0 := [0, \frac{1}{3}]$ and $C_1 := [\frac{2}{3}, 1]$, $C_{00} := [0, \frac{1}{3^2}]$, $C_{01} := [\frac{2}{3^2}, \frac{1}{3}]$, $C_{10} := [\frac{2}{3}, \frac{7}{3^2}]$, and $C_{11} := [\frac{8}{3^2}, 1]$, etc. Prove that *C* is indeed a Cantor set and that *C* is Lebesgue null.
 - (c) Define a Cantor subset of [0,1] of positive Lebesgue measure.

HINT: Note that in the standard Cantor set, $C_{s0} \sqcup C_{s1}$ occupies 2/3 of C_s regardless of $n := \ln(s)$. Change the construction so that for each n, the (n + 1)th level occupies the p_n proportion of the nth level and the sequence (p_n) goes to 1 fast enough.

- 7. Follow the steps below to build an example of a Borel (in fact, continuous) function $f : [0,1] \rightarrow [0,1]$ and a Lebesgue measurable function $g : [0,1] \rightarrow [0,1]$ such that the composition $g \circ f$ is not Lebesgue measurable.
 - (i) Prove that every Lebesgue measurable set *A* of positive measure contains a non-measurable subset.

HINT: Any transversal of $E_{\mathbb{Q}}|_A$, the proof is the same as for A := [0, 1] done in class.

⁴We say that a collection C of subsets of X separates points if for each pair x, y of distinct points, there is a set $C \in C$ containing exactly one of the points x, y.

⁵Most of this quesiont was meant for Homework 1, but I forgot.

⁶A topological space is **connected** if it has no clopen sets, other than the whole space and \emptyset .

- (ii) Let C_0 and C_+ be Cantor sets in [0,1] where C_0 is Lebesgue null, while C_+ has positive Lebesgue measure. Let $h: C_+ \to C_0$ be a homeomorphism and extend it to a Borel function $f:[0,1] \to [0,1]$ so that $f(C_+) = C_0$ and $f(C_+^c)$ are disjoint. REMARK: If C_0 and C_+ are constructed by removing middle open intervals at every step, like in Question 6(b), then f can be taken to be continuous, think how.
- (iii) Let $Y \subseteq C_+$ be a Lebesgue non-measurable set and put $g := \mathbb{1}_{f(Y)}$. Observe that g is Lebesgue measurable, however $g \circ f$ is not.
- **8.** Let (X, μ) be a measure space. Prove that the integral of simple functions is well-defined, i.e. for all μ -measurable sets $A_i, B_j \subseteq X$ and $a_i, b_j \in \mathbb{R}$,

$$\sum_{i < n} a_i \mathbb{1}_{A_i} = \sum_{j < m} b_j \mathbb{1}_{B_j} \text{ implies } \sum_{i < n} a_i \mu(A_i) = \sum_{j < m} b_j \mu(B_j).$$